Thursday, November 13, 2008

Problem #23

This one was rather easy, I just modified the code I used from Problem #21.


#include <iostream>

#define MAX_SIZE_TO_GO_TO 28123

using namespace std;

int sumDivisors (int);
bool isAbundant (int);

int main()
{
int total = 0;
int count = 0;
int allAbundantNumbers[MAX_SIZE_TO_GO_TO];
bool allNums[MAX_SIZE_TO_GO_TO];

for (unsigned int i = 0; i < MAX_SIZE_TO_GO_TO; i++)
allNums[i] = allAbundantNumbers[i] = false;

for (unsigned int i = 0; i < MAX_SIZE_TO_GO_TO; i++)
if (isAbundant (i))
{
allAbundantNumbers[count] = i;
count++;
}

for (unsigned int i = 0; i < count; i++)
for (unsigned int j = 0; j < count; j++)
if (allAbundantNumbers[i] + allAbundantNumbers[j] <= MAX_SIZE_TO_GO_TO)
allNums[allAbundantNumbers[i] + allAbundantNumbers[j]] = true;

for (unsigned int i = 0; i < MAX_SIZE_TO_GO_TO; i++)
if (allNums[i] == false)
total += i;

cout << total << endl;

system("pause");
return 0;
}

int sumDivisors (int num)
{
int total = 0;

for (unsigned int i = 1; i < static_cast<unsigned int> (num / 2 + 1); i++)
if (num % i == 0)
total += i;

return total;
}

// An abundant number is a number whos proper divisors sum higher than the number it's self
bool isAbundant (int num)
{
int total = 0;
total = sumDivisors (num);

if (total > num)
return true;
return false;
}

No comments: